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Abstract

An efficient and conservative collocation method is proposed and used to develop
a global shallow water model in this paper. Being a nodal type high-order scheme, the
present method solves the point-wise values of dependent variables as the unknowns
within each control volume. The solution points are arranged as Gauss–Legendre5

points to achieve the high-order accuracy. The time evolution equations to update the
unknowns are derived under the flux-reconstruction (FR) framework (Huynh, 2007).
Constraint conditions used to build the spatial reconstruction for the flux function in-
clude the point-wise values of flux function at the solution points, which are computed
directly from the dependent variables, as well as the numerical fluxes at the boundaries10

of the control volume which are obtained as the Riemann solutions between the adja-
cent cells. Given the reconstructed flux function, the time tendencies of the unknowns
can be obtained directly from the governing equations of differential form. The resulting
schemes have super convergence and rigorous numerical conservativeness.

A three-point scheme of fifth-order accuracy is presented and analyzed in this paper.15

The proposed scheme is adopted to develop the global shallow-water model on the
cubed-sphere grid where the local high-order reconstruction is very beneficial for the
data communications between adjacent patches. We have used the standard bench-
mark tests to verify the numerical model, which reveals its great potential as a candi-
date formulation for developing high-performance general circulation models.20

1 Introduction

A recent trend in developing global models for atmospheric and oceanic general cir-
culations is the increasing use of the high order schemes that make use of local re-
constructions and have the so-called spectral convergence. Among many others are
those reported in Giraldo et al. (2002); Thomas and Loft (2005); Giraldo and Warburton25

(2005); Nair et al. (2005a, b); Taylor and Fournier (2010); Blaise and St-Cyr (2012). Two

4252

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4251/2014/gmdd-7-4251-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4251/2014/gmdd-7-4251-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4251–4290, 2014

A conservative
collocation scheme

and global
shallow-water model

C. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

major advantages that make these models attractive are (1) they can reach the targeted
numerical accuracy more quickly by increasing the number of degrees of freedom (or
unknowns), and (2) they can be more computationally intensive with respect to the data
communications in parallel processing (Dennis et al., 2012).

The discontinuous Galerkin (DG) (Cockburn et al., 2000; Hesthaven and Warburton,5

2008) and spectral element (SE) (Patera, 1984; Karniadakis and Sherwin, 2005) meth-
ods are the widely used framework in this context. A more general formulation, so-
called flux reconstruction (FR), was presented in Huynh (2007) which covers a wide
spectrum of nodal type schemes, including the DG and SE as the special cases. An
FR scheme solves the values at the solution points located within each grid element10

cell, and the cell integrated value, which are the weighted summation of the solutions,
can be numerically conserved. We recently show in Xiao et al. (2013) that the flux re-
construction can be implemented in a more flexible way, and other new schemes can
be generated by properly chosen different types of constraint conditions.

In this paper, we introduce a new scheme which is different from the existing15

nodal DG and SE methods under the FR framework. The scheme, so-called Gauss–
Legendre-point based conservative collocation (GLPCC) method, is a kind of collo-
cation method that solves the governing equations of differential form at the solution
points, and is very simple and easy to follow. The Fourier analysis and numerical tests
show that the present scheme has the super convergence property same as the DG20

method. A global shallow water equation (SWE) model has been developed by imple-
menting the three-point GLPCC scheme on a cubed-sphere grid. The model has been
verified by the benchmark tests. The numerical results show the fifth-order accuracy of
the present global SWE model. All the numerical outputs look favourably comparable
to other existing methods.25

The rest of this paper is organized as follows. In Sect. 2, the numerical formulations
in one dimensional case are described in detail. The extension of the proposed scheme
to a global shallow water model on cubed-sphere grid is then discussed in Sect. 3. In
Sect. 4, several widely used benchmark tests are solved by the proposed model to
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verify its performance in comparison with other existing models. Finally, a short conclu-
sion is given in Sect. 5.

2 Numerical formulations

2.1 Scheme in one dimensional scalar case

The first order scalar hyperbolic conservation law in one dimension is solved in this5

subsection,

∂q
∂t

+
∂f (q)

∂x
= 0, (1)

where q is dependent variable and f is flux function.
The computational domain, x ∈ [xl ,xr ], is divided into I elements with the grid spac-10

ing of ∆xi = xi+ 1
2
−xi− 1

2
for the i th element Ci :

[
xi− 1

2
,xi+ 1

2

]
.

A class of schemes can be devised under the framework of the flux reconstruction
(FR) (Huynh, 2007; Xiao et al., 2013). For each grid element, e.g. Ci , the point values,
qim (m = 1,2, . . . ,M), defined at the solution points (xim) which are located within the
element, are treated as the computational variables (unknowns). High order schemes15

can be built by increasing the number of the solution points. In this paper, we describe
the GLPCC scheme that has three solution points for each grid element (M = 3).

Three local degrees of freedom (DOFs) (unknowns), i.e. qim, m = 1 to 3, are point-
wisely defined at solution points xim within each element as shown in Fig. 1 (hollow
circles). To achieve the best accuracy, the DOFs are arranged at Gauss–Legendre20

points,

xi1 = xi −
1
2

√
3
5
∆xi , xi2 = xi and xi3 = xi +

1
2

√
3
5
∆xi , (2)

where xi is the center of the element xi = (xi− 1
2
+xi+ 1

2
)/2.
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The unknowns are updated by applying the differential-form governing equations
Eq. (1) at solution points as

∂qim

∂t
= −
[
∂f (q)

∂x

]
im

. (3)

As a result, the key task left is to evaluate the derivatives of the flux function, which is5

realized by reconstructing the piecewise flux function, Fi (x), over each element. Once
the reconstructed flux function is obtained, the derivative of flux function is approxi-
mated by[
∂f (q)

∂x

]
im

≈
[
∂Fi (x)

∂x

]
im

. (4)
10

In this study, we assume that the reconstructed flux function over the i th element,
Fi (x), has the form of

Fi (x) = c0
i +c1

i (x−xi )+c2
i (x−xi )

2 +c3
i (x−xi )

3 +c4
i (x−xi )

4, (5)

where the coefficients, c0
i , c1

i , . . . , c4
i , are determined by a collocation method, which15

meets five constrained conditions specified at five constrained points (shown in Fig. 1
by solid circles) as

Fi (xim) = f (qim) , m = 1 to 3

Fi

(
xi− 1

2

)
= f̃i− 1

2

Fi

(
xi+ 1

2

)
= f̃i+ 1

2

(6)

where f̃i± 1
2

are the values of flux function at the interfaces between different elements.20

In Eq. (6), f (qim) are calculated by three known DOFs at solution points. The values
of flux function at interfaces are obtained by solving the Riemann problems with the val-
ues of dependent variables at the interfaces between two neighboring elements, which
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are interpolated separately from two adjacent elements. Considering the interface at
xi− 1

2
, we get two values of flux function from elements Ci−1 and Ci as

f L
i− 1

2

= f
(
qL
i− 1

2

)
= f
[
Qi−1

(
xi− 1

2

)]
and f R

i− 1
2

= f
(
qR
i− 1

2

)
= f
[
Qi

(
xi− 1

2

)]
, (7)

where Qi (x) is a spatial reconstruction for dependent variable based on local DOFs,5

having the form of

Qi (x) =
3∑

m=1

[Lm(x)qim] , (8)

where the Lagrange basis function Lm(x) =
∏3

s=1,s 6=m
x−xis
xim−xis

.

Then the numerical flux f̃i− 1
2

at the element interface is obtained by an approximate10

Riemann solver as,

f̃i− 1
2
=

1
2

[
f L
i− 1

2

+ f R
i− 1

2

]
+

1
2
a
[
qL
i− 1

2

−qR
i− 1

2

]
, (9)

where a =

∣∣∣∣f ′(qavg

i− 1
2

)∣∣∣∣ with f ′(q) = ∂f (q)
∂q being the characteristic speed. A simple aver-

aging qavg

i− 1
2

=
qL

i− 1
2
+qR

i− 1
2

2 is used in the present paper.15

It is easy to show that the proposed scheme is conservative in terms of the volume-
integrated average of each element,

qi =
3∑

m=1

(wimqim) , (10)
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where the weights wim are obtained by integrating the Lagrange basis function as

wim =
1

∆xi

xi+ 1
2∫

xi− 1
2

Lm(x)dx. (11)

A direct proof of this observation is obtained by integrating Eq. (3) over the grid
element, yielding the following conservative formulation,5

dqi

dt
=

3∑
m=1

(
wim

dqim

dt

)
= − 1

∆x

(
f̃i+ 1

2
− f̃i− 1

2

)
. (12)

With the above spatial discretization, Runge–Kutta method is used to solve the fol-
lowing semi-discrete equation,

dqim

dt
=D(q?), (13)10

where D represents the spatial discretisation and q? is the dependent variables known
at time t = t?.

A fifth-order Runge–Kutta scheme is adopted in the numerical tests to examine the
convergence rate,15

qim (t? +∆t) = q?
ip +∆t

(
17

144
d1 +

25
36

d3 +
1

72
d4 −

25
72

d5 +
25
48

d6

)
, (14)
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where

d1 =D
(
q?)

d2 =D
(
q? + 1

5∆td1
)

d3 =D
(
q? + 2

5∆td2
)

d4 =D
(
q? + 9

4∆td1 +
15
4 ∆td2 −5∆td3

)
d5 =D

(
q? − 63

100∆td1 +
9
5∆td2 − 13

20∆td3 +
2

25∆td4
)

d6 =D
(
q? − 6

25∆td1 +
4
5∆td2 +

2
15∆td3 +

8
75∆td4

)
(15)

In other cases, a third-order scheme is adopted to reduce the computational cost,
which does not noticeably degrade the numerical accuracy since the truncation errors5

of the spatial discretisation are usually dominant. It is written as

qim (t? +∆t) = q?
ip +∆t

(
1
6
d1 +

1
6
d2 +

2
3
d3

)
, (16)

where
d1 = D

(
q?)

d2 = D
(
q? +∆td1

)
d3 = D

(
q? + 1

4∆td1 +
1
4∆td2

) . (17)10

2.2 Spectral analysis and convergence test

We conduct the spectral analysis (Huynh, 2007; Xiao et al., 2013) to theoretically study
the performance of GLPCC scheme by considering the following linear equation

∂q
∂t

+c
∂q
∂x

= 0 (x ∈ [−∞,+∞]) and c = 1. (18)15

The linear equation is discretised on a uniform grid with ∆x = 1. Since c > 0, the
spatial discretisation for the three DOFs defined in element Ci involves the six DOFs
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within elements Ci and Ci−1. Using the proposed scheme, we have the semi-discrete
equation as

d
dt

 qi1
qi2
qi3

 =

 ci−1,11 ci−1,12 ci−1,13 ci ,11 ci ,12 ci ,13
ci−1,21 ci−1,22 ci−1,23 ci ,21 ci ,22 ci ,23
ci−1,31 ci−1,32 ci−1,33 ci ,31 ci ,32 ci ,33




qi−1,1
qi−1,2
qi−1,3
qi1
qi2
qi3

 . (19)

With a wave solution q (x,t) = eIω(x+t), semi-discrete formulation Eq. (19) is written5

as

dqi

dt
= Pqi , (20)

where qi = [qi1,qi2,qi3]T and

P =

 ci−1,11e
−Iω +ci ,11 ci−1,12e

−Iω +ci ,12 ci−1,13e
−Iω +ci ,13

ci−1,21e
−Iω +ci ,21 ci−1,22e

−Iω +ci ,22 ci−1,23e
−Iω +ci ,23

ci−1,31e
−Iω +ci ,31 ci−1,32e

−Iω +ci ,32 ci−1,33e
−Iω +ci ,33

 . (21)10

The exact solution to Eq. (18) is

dq
dt

= −Iωq. (22)

The numerical property of the proposed scheme can be examined by analysing the15

eigenvalues of matrix P in Eq. (21). Truncation errors of spatial discretization are com-
puted by comparing the principal eigenvalues of matrix P and the exact solution −Iω
and the convergence rate can be approximately estimated by errors for two different
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wavenumbers. The results are shown in Table 1 and fifth-order accuracy is achieved.
The spectrum of the eigen matrix of Eq. (21) is shown in Fig. 2. A scheme achieves
better numerical performance when the hollow circles become closer to imaginary axis.
And the maximum of spectral radius determines the largest available CFL number, i.e.
larger spectral radius corresponding to smaller available CFL number. Numerical dis-5

persion and dissipation relations dominated by the principal eigenvalues are shown in
Fig. 3. Numerical properties of several schemes were analyzed in Xiao et al. (2013),
shown in their Fig. 1 for spectra and Fig. 2 for numerical dispassion and dispersion
relations. The proposed scheme has the similar numerical properties as DG3 (Huynh,
2007) and MCV5 (Ii and Xiao, 2009) schemes. Compared with DG3 scheme, the pro-10

posed scheme is easier to be implemented and thus has less computational overheads.
Though MCV5 scheme gives better spectra (eigenvalues are closer to imaginary) than
DG3 scheme and the present scheme, it adopts more local DOFs under the same grid
spacing, i.e. 4I+1 DOFs for MCV5 and 3I DOFs for DG3 and the present scheme where
I is the total number of elements. Both MCV5 and the present scheme are accelerat-15

ing up to wavenumber 2π. Considering the results of spectral analysis, the proposed
scheme is a very competitive framework to build high-order schemes compared with
existing advanced methods.

Advection of a smooth sine wave is then computed by GLPCC scheme on a series
refined uniform grids to numerically checking the converge rate. The test case is speci-20

fied by solving Eq. (18) with initial condition q(x,0) = sin(2πx) and periodical boundary
condition over x ∈ [0,1].

CFL number of 0.1 is adopted in this example. Normalized l1, l2 and l∞ and corre-
sponding convergence rate are given in Table 2. Again, the fifth-order convergence is
obtained, which agrees with the conclusion in the above spectral analysis.25
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2.3 Extension to system equations

The proposed scheme is then extended to a hyperbolic system with L equations in one
dimension, which is written as

∂q
∂t

+
∂f(q)

∂x
= 0, (23)

5

where q is the vector of dependent variables and f the vector of flux functions.
Above formulations can be directly applied to each equation of the hyperbolic system,

except that the Riemann problem, which is required at interfaces between different
elements to determine the values of flux functions, is solved for a coupled system of
equations.10

For a hyperbolic system of equations, the approximate Riemann solver used at inter-
face xi− 1

2
is obtained by rewriting Eq. (9) as

f i− 1
2
=

1
2

[
fL
i− 1

2

+ fR
i− 1

2

]
+

1
2

a
[
qL
i− 1

2

−qR
i− 1

2

]
, (24)

where the vectors f
L
i− 1

2
, fR

i− 1
2
, qL

i− 1
2

and q
R
i− 1

2
are evaluated by applying the formula-15

tions designed for scalar case to each component of the vector. In this paper, we use
a simple approximate Riemann solver, the local Lax–Friedrich (LLF) solver, where a is
reduced to a positive real number as

a = max
(
|λ1| , |λ2| , . . . , |λL|

)
, (25)

20

where λl (l = 1 to L) are eigenvalues of matrix A
(
q

avg

i− 1
2

)
with A (q) = ∂f(q)

∂q and q
avg

i− 1
2

=

q
L

i− 1
2
+qR

i− 1
2

2 .
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3 Global shallow-water model on cubed-sphere grid

3.1 Cubed-sphere grid

The cubed-sphere grid (Sadourny, 1972), shown in Fig. 4, is obtained by projecting
an inscribed cube onto a sphere. As a result, the surface of a sphere is divided into
six identical patches and six identical curvilinear coordinates are then constructed.5

Two kinds of projections are adopted to construct the local curvilinear coordinates,
i.e. gnomonic and conformal projections (Rancic et al., 1996). Considering the analytic
projection relations and more uniform areas of the computational elements, the equian-
gular gnomonic projection is adopted in the present study. The transformation laws and
the projection relations can be referred to Nair et al. (2005a, b) for details. Whereas,10

a side-effect of this selection is that the discontinuous coordinates are found along the
boundary edges between adjacent patches. In Chen and Xiao (2008), we have shown
that the compact stencils for the spatial reconstructions through using local DOFs are
beneficial to suppress the extra numerical errors due to the discontinuous coordinates.

3.2 Global shallow-water model15

The local curvilinear coordinate system (ξ,η) are shown in Fig. 5, where P is a point on
sphere surface, and P ′ is corresponding point on the cube surface through a gnomonic
projection. λ and θ represent the longitude and latitude. α and β are central angles
spanning from −π

4 to π
4 for each patch. Local coordinates are defined by ξ = Rα and

η = Rβ where R is the radius of the Earth.20

To build a high-order global model, the governing equations is rewritten onto the gen-
eral curvilinear coordinates. As a result, the numerical schemes developed for Carte-
sian grid are straightforwardly applied in the computational space. The shallow-water
equations are recast on each spherical patch in flux form as

∂q
∂t

+
∂e (q)

∂ξ
+
∂f (q)

∂η
= s (q) , (26)25
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where dependent variables are q =
[√

Gh, u, v
]T

with water depth h, co-

variant velocity vector (u,v) and Jacobian of transformation
√
G, flux vec-

tors are e =
[√

Ghũ, g (h+hs)+
1
2 (ũu+ ṽv) , 0

]T
in ξ direction and f =[√

Ghṽ , 0,g (h+hs)+
1
2 (ũu+ ṽv)

]T
in η direction with gravitational acceleration

g, height of the bottom mountain hs and contravariant velocity vector (ũ, ṽ), source5

term is s =
[
0,

√
Gṽ (f + ζ ) , −

√
Gũ (f + ζ )

]T
with Coriolis parameter f = 2Ωsinθ, ro-

tation speed of the Earth Ω= 7.292×10−5s−1 and relative vorticity ζ = 1√
G

(
∂v
∂ξ −

∂u
∂η

)
.

The expression of metric tensor can be found in Chen and Xiao (2008).
Here, taking

√
Gh as the model variable assures the global conservation of total

mass. And the total height is used in the flux term. Consequently, the proposed model10

can easily deal with the topographic source term in a conservative way (Xing and Shu,
2005).

The numerical formulations for two dimensional schemes are easily obtained under
the present framework by implementing the one-dimensional GLPCC formulations in ξ
and η directions respectively as15 (
∂q
∂t

)
=
(
∂q
∂t

)ξ
+
(
∂q
∂t

)η
+s, (27)

where(
∂q
∂t

)ξ
= −

∂e (q)

∂ξ
and

(
∂q
∂t

)η
= −

∂f (q)

∂η
(28)

20

are discretised along the grid lines in ξ and η directions.
We describe the numerical procedure in ξ direction here as follows. In η direction,

similar procedure is adopted for spatial discretisation by simply exchanging e and ξ
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with f and η. Considering three DOFs, i.e. qi j1nk , qi j2nk and qi j3nk , along the nth row

(n = 1 to 3) of element Ci jk =
[
ξi− 1

2
,ξi+ 1

2

]
×
[
ηj− 1

2
,ηj+ 1

2

]
on patch k (defined at solution

points denoted by the hollow circles in Fig. 6), we have the task to solve the following
equations(

∂qi jmnk

∂t

)ξ

= −
(
∂e
∂ξ

)
i jmnk

. (29)5

As in one dimensional case, a fourth-order polynomial Ei jnk(x) is built for spatial
reconstructions of flux functions e to calculate the derivative of e with regard to ξ as(
∂e
∂ξ

)
i jmnk

=

[
∂Ei jnk (ξ)

∂ξ

]
i jmnk

, (30)

10

where E (ξ) can be obtained by applying the constrained conditions at five constrained
points (solid circles in Fig. 6) along the nth row of element Ci jk , which are point-wise
values of flux functions e including three from DOFs directly and other two by solving
Riemann problems along the nth lines of different elements.

The LLF approximate Riemann solver is adopted. It means that the parameter a in15

Eq. (24) reads a = |ũ|+
√
G11gh. Details of solving Riemann problem in global shallow-

water model using governing equations Eq. (26) can be referred to Nair et al. (2005b).
How to set up the boundary conditions along twelve patch boundary is a key prob-

lem to construct a global model on cubed-sphere grid. With the enough information
from the adjacent patch, above numerical formulations can be applied on each patch20

independently. In present study, the values of dependent variables are required to be
interpolated from the grid lines in the adjacent patch, for example, as shown in Fig. 7
for boundary edge between patch 1 and patch 4. When we solving the Riemann prob-

lem at point P on patch 1, qR
P =
[(√

Gh
)R
P

,uR
p ,vRP

]T
is obtained by interpolation along
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the grid line P P1. Whereas, qL
P =
[(√

Gh
)L
P

,uL
p,vLP

]T
need to be interpolated from the

DOFs defined along grid line P4P on patch 4. Since the coordinates on patch 1 and
patch 4 is discontinuous at point P , the values of the covariant velocity vector on the
coordinate system on patch 4 should be projected to coordinate system on patch 1
and the values of the scalar can be adopted directly. Different from our previous study5

(Chen and Xiao, 2008), we solve the Riemann problem at patch boundary only in the
direction perpendicular to the edge in present study. The parameter a in Eq. (24) is
determined by the contravariant velocity component and the water depth, which are
exactly same on two adjacent patches. As a result, solving Riemann problem obtains
the same result wherever the numerical procedure is conducted on patch 1 or patch 4.10

So, no additional corrections are required and the global conservation is guaranteed
automatically.

4 Numerical tests

Representative benchmark tests, three from Williamson’s standard test set (Williamson
et al., 1992) and one introduced in Galewsky et al. (2004), are checked in this section to15

verify the performance of the proposed global shallow-water model. All measurements
of errors are defined following Williamson et al. (1992).

4.1 Williamson’s standard case 2: steady-state geostrophic flow

A balanced initial condition is specified in case by using a height field as

gh = gh0 −
(
RΩu0 +

u2
0

2

)
(−cosλcosθsinγ + sinθcosγ)2 (31)20
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where gh0 = 2.94×104, u0 = 2πR/(12days) and the parameter γ represents the angle
between the rotation axis and polar axis of the Earth, and a velocity field (velocity
components in latitude/longitude grid uλ and uθ) as{

uλ = u0 (cosθcosγ + sinθcosλsinγ)

uθ = −u0 sinλsinγ
. (32)

5

As a result, both height and velocity fields should keep unchanging during integra-
tion. Additionally, the height field in this test case is considerably smooth. Thus we run
this test on a series of refined grids to check the convergence rate of GLPCC global
model. The results of l1, l2 and l∞ errors and convergence rates are in Table 3. Af-
ter extending the proposed high-order scheme to the spheric geometry through the10

application of the cubed-sphere grid, the original fifth-order accuracy as shown in one-
dimensional simulations and spectral analysis preserved in this test. Numerical results
of height fields and absolute errors are shown in Fig. 8 for test on grid G12, which
means there are 12 elements in both ξ and η directions on every patch, in differ-
ent flow directions. i.e. γ = 0 and γ = π

4 . Compared with our former global model on15

cubed sphere, the present model is more accurate in this test. On grid G20 (240 DOFs
along the equator), the normalized errors are l1 = 1.278×10−7, l2 = 2.008×10−7 and
l∞ = 8.045×10−7, which are almost one order smaller than those on grid 32×32×6
(with similar number of DOFs, 256 DOFs along the equator) in Chen and Xiao (2008).
The influence of patch boundaries on the numerical results can be found in the plots20

of the absolute errors. The distributions of absolute errors can reflect the locations of
patch boundaries, especially in the flow with γ = 0.
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4.2 Williamson’s standard case 5: zonal flow over an isolated mountain

The total height and velocity field in case is same as above case 2 with γ = 0, except
h0 = 5960m and u0 = 20m s−1. A bottom mountain is specified as

hs = hs0

(
1− r

r0

)
, (33)

5

where hs0 = 2000m, r0 =
π
9 and r = min

[
r0,
√

(λ− λc)2 + (θ−θc)2
]

.

This test is adopted to check the performance of a shallow-water model to deal with
a topographic source term. We run this test on a series of refined grid G6, G12, G24 and
G48. Numerical results of height fields are shown in Fig. 9 for total height field of the
test on grid G12 at day 5, 10 and 15, which agree well with the spectral transform solu-10

tions on T213 grid (Jakob-Chien et al., 1995). Furthermore, the oscillations occurring at
boundary of bottom mountain observed in spectral transform solutions are completely
removed through the conservative treatment of topographic source term. The numeri-
cal results on finer grids are not depicted here since they are visibly identical to results
shown in Fig. 9. Present model assures the rigorous conservation of the total mass.15

The conservation errors of total energy and enstrophy are interest for atmospheric
modelling. As shown in Fig. 10, the conservation errors for total energy (left panel) and
potential enstrophy (right panel) of tests on a series of refined grid are checked. As
above case, to compare with our former fourth-order model this test case is checked
on grid G20 having the similar DOFs on former 32×32×6 grid. The conservation errors20

are −9.288×10−7 for total energy and −1.388×10−5 for potential enstrophy and much
smaller than those by fourth-order model in Chen and Xiao (2008).

4.3 Williamson’s standard case 6: Rossy–Haurwitz wave

Rossby–Haurwitz wave case checks a flow field including the phenomena of a large
range of scales. As a result, the high-order schemes are always preferred to better25
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capture the evolution of small scales. The spectral transform solution on fine T213 grid
given by Jakob-Chien et al. (1995) is wildly accepted as the reference solution to this
test due to the good capability of spectral method to reproduce the behaviour of small
scales. Numerical results of height fields by GLPCC model are shown in Fig. 11 for
tests on grids G12 and G24 at day 7 and 14. At day 7, no visible difference is observed5

between the solutions on different grids and both agree well with the reference solution.
At day 14, obvious differences are found on different grids. Eight circles of 8500 m exist
in the result on coarser grid G12, which are also found in the spectral transform solution
on T42 grid, but not in the results on finer grid G24 by GLPCC model and the spectral
transform ones on T63 and T213 grids. Additionally, the contour lines of 8100 m exists10

in spectral transform solution on T213 grid, but not in present results and spectral trans-
form ones on T42 and T63 grids. According to the analysis in Thuburn and Li (2000),
this is due to the less inherent numerical viscosity on finer grid. As in case 5, conser-
vation errors for total energy and potential enstrophy in Rossby–Haurwitz test are also
shown in Fig. 12 for tests with different resolutions. Total energy error of −6.131×10−6

15

and potential enstrophy error −1.032×10−3 are obtained by the present model running
on grid G20, which are smaller than those by our fourth-order model on 32×32×6 grid
(Chen and Xiao, 2008). This test was also checked in Chen et al. (2014) by a third-
order model (see their Fig. 19c and d), where much more DOFs (nine times than those
on grid G24) are adopted to obtain a results without eight circles of 8500 m. High-order20

accuracy is very beneficial to simulating this test and the atmospheric dynamics.

4.4 Barotropic instability

A barotropic instability test was proposed in Galewsky et al. (2004). Two kinds of setup
of this test are usually checked in literatures, i.e. the balanced setup and unbalanced
setup. The balanced setup is same as Williamson’s standard case 2, except the water25

depth changes with much larger gradient within a very narrow belt zone. This test is
of special interest for global models on the cubed-sphere grid, since that narrow belt
zone is located along the boundary edges between patch 5 and patches 1, 2, 3, and 4.
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Extra numerical errors near boundary edges would easily pollute the numerical results.
In practice, 4-wave pattern errors may dominate the simulations on coarse grids. For
this case, we run the proposed model on a series of refined grids. By checking the
convergence of the numerical results, we can figure out if the extra numerical errors
generated by discontinuous coordinates can be suppressed by the proposed models5

with the increase of the resolution. The unbalanced setup introduces a small pertur-
bation to the height field. Thus, the balanced condition can not be preserved and the
flow will evolve to a very complex pattern. Exact solution does not exist for unbalanced
setup and a spectral transform solution on T341 grid to this case given in Galewsky
et al. (2004) at day 6 is widely adopted as reference solution. The details of setup of10

this test can be referred to Galewsky et al. (2004).

4.4.1 Balanced setup

We test the balanced setup at first. The proposed model runs on two grids with differ-
ent resolutions of G24 and G72. Numerical results of water depth after integrating for
5 days are shown in Fig. 13 and evolution of normalized l1 errors of water depth of15

two simulations are depicted in Fig. 14. On a coarse grid with G24, the numerical result
is dominated by four-wave pattern errors and the balanced condition can not be pre-
served in simulation. The accuracy is obviously improved by increasing the resolution
using grid G72. The numerical result of height field at day 5 is visually identical to the
initial condition. The improvement of the accuracy can be also proven by checking the20

velocity component uθ. Numerical results of uθ, which keeps zero in exact solution,
vary within ±31 m s−1 on grid G24 and much smaller range of ±0.8 m s−1 on grid G72.
This test is more challenging for cubed-sphere grid than other quasi-uniform grids, e.g.
Yin–Yang grid and icosahedral grid. As shown in Fig. 14, at very beginning of the sim-
ulation the l1 errors increase to a magnitude of about 10−4 and this character does not25

change with the grid resolution. This evolution pattern of l1 errors are different from
those of models on Yin–Yang and icosahedral grids, where initial startup errors also
decrease on fine grids as shown in Chen et al. (2014, Fig. 23).
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4.4.2 Unbalanced setup

We run the unbalanced setup on a series of refined grids to check if the numerical
result will converge to the reference solution on fine grid. Numerical results for relative
vorticity field after integrating the proposed model for 6 days are shown in Fig. 15.
Shown are results on four grids with gradually refined resolutions of G24, G48, G72 and5

G96. On grid G24, the structure of numerical results is very different from the reference
solution. After refining the grid resolution, the result is improved on grid G48. Except
the structure in top-left conner, it looks very similar to the reference solution. On grid
G72 and G96, numerical results agree with reference solution very well and there is
no obvious difference between these two contour plots. Compared with the results10

of our former fourth-order model, the contour lines look slightly less smooth. Similar
results are found in the spectral transform reference solution. Since this test contains
more significant gradients in the solution, a high-order scheme might need some extra
numerical dissipation to remove the noise around the large-gradients. Increasing the
grid solution can effectively reduce the magnitude of the oscillations as shown in the15

present simulation.

5 Conclusions

In this paper, a three-point high-order GLPCC scheme is proposed under the frame-
work of flux reconstruction. Three local DOFs are defined within each element at
Gauss–Legendre points and a super convergence of fifth order is achieved. This single-20

cell based method shares the advantages with the DG and SE methods, such as high-
order accuracy, grid flexibility, global conservation and high scalability for parallel pro-
cessing. Meanwhile, it is much simpler and easier to implement. With the application
of the cubed-sphere grid, the global shallow water model has been constructed us-
ing GLPCC scheme. Benchmark tests are checked by using the present model, and25
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promising results reveal that it is a potential framework to develop high-performance
general circulation models for atmospheric and oceanic dynamics.
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Table 1. Numerical errors at two wavenumbers and corresponding convergence rate.

Wavenumber ω = π
8 ω = π

4 Order

Error −3.1408×10−5 −4.2715×10−6i −5.0466×10−7 −3.4068×10−8i 4.97
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Table 2. Numerical errors and convergence rates for advection of a sine wave.

Resolution l1 error order l2 error Order l∞ error Order

I = 4 3.9392×10−3 – 3.9623×10−3 – 3.9702×10−3 –
I = 8 1.5683×10−4 4.65 1.4841×10−4 4.74 1.3396×10−4 4.89
I = 16 5.3627×10−6 4.87 4.8431×10−6 4.94 4.1707×10−6 5.01
I = 32 1.6897×10−7 4.98 1.5327×10−7 4.98 1.3293×10−7 4.97
I = 64 5.3017×10−9 4.99 4.8092×10−9 4.99 4.1670×10−9 5.00
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Table 3. Numerical errors and convergence rates for case 2 with flow in north-east direction
(γ = π

4 ).

Grid l1 error l1 order l2 error l2 order l∞ error l∞ order

G6 3.394×10−5 – 5.492×10−5 – 1.868×10−4 –
G12 1.440×10−6 4.56 2.321×10−6 4.56 8.924×10−6 4.39
G24 5.367×10−8 4.75 8.317×10−8 4.80 3.457×10−7 4.69
G48 1.942×10−9 4.79 2.957×10−9 4.81 1.487×10−8 4.54
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Fig. 1. Configuration of DOFs and constrained conditions in one dimensional case.
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Figure 1. Configuration of DOFs and constrained conditions in one dimensional case.
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Figure 3. Numerical dispersion (left) and dissipation (right) relations of the semi-discrete
scheme.
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Fig. 5. The gnomonic projection.

Fig. 6. Configuration of DOFs and constrained conditions in two dimensional case.
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Figure 5. The gnomonic projection.
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Figure 6. Configuration of DOFs and constrained conditions in two dimensional case.
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Fig. 7. Riemann problem along patch boundary edge between patch 1 and 4.
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Figure 7. Riemann problem along patch boundary edge between patch 1 and 4.
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Figure 8. Numerical results and absolute errors of water depth for case 2 on grid G12 at day 5.
Shown are water depth (top-left) and absolute error (top-right) of the flow with γ = 0 and water
depth (bottom-left) and absolute error (bottom-right) of the flow with γ = π

4 .
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Fig. 9. Numerical results of total height field for case 5 on grid G12 at day 5 (top-left), day 10 (top-right) and

day 15 (bottom).
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Figure 9. Numerical results of total height field for case 5 on grid G12 at day 5 (top-left), day 10
(top-right) and day 15 (bottom).
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Fig. 9. Numerical results of total height field for case 5 on grid G12 at day 5 (top-left), day 10 (top-right) and

day 15 (bottom).
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Figure 10. Normalized conservation errors of total energy and potential enstrophy on refined
grids for case 5.
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Fig. 11. Numerical results of water depth for Rossby-Haurwitz wave test on grid G12 at day 7 (top-left), day

14 (top-right) and on grid G24 at day 7 (bottom-left) and day 14 (bottom-right).
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Fig. 12. Normalized conservation errors of total energy and potential enstrophy on refined grids for Rossby-
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Figure 11. Numerical results of water depth for Rossby–Haurwitz wave test on grid G12 at day
7 (top-left), day 14 (top-right) and on grid G24 at day 7 (bottom-left) and day 14 (bottom-right).
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Fig. 11. Numerical results of water depth for Rossby-Haurwitz wave test on grid G12 at day 7 (top-left), day

14 (top-right) and on grid G24 at day 7 (bottom-left) and day 14 (bottom-right).
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Fig. 12. Normalized conservation errors of total energy and potential enstrophy on refined grids for Rossby-

Haurwitz wave test.
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Figure 12. Normalized conservation errors of total energy and potential enstrophy on refined
grids for Rossby–Haurwitz wave test.
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Figure 13. Numerical results of water depth for balanced setup of barotropic instability test on
two grids G24 (left) and G72 (right). Contour lines vary from 9000 m to 10100 m.
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Figure 14. Normalized l1 error of water depth for balanced setup of barotropic instability test
on two grids.

4289

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4251/2014/gmdd-7-4251-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4251/2014/gmdd-7-4251-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4251–4290, 2014

A conservative
collocation scheme

and global
shallow-water model

C. Chen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 15. Numerical results of relative vorticity for unbalanced setup of barotropic instability
test on a series of refined grids. Contour lines vary from −1.1×10−4 to −0.1×10−4 by dashed
lines and 0.1×10−4 to 1.5×10−4 by solid lines.
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